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Abstract-This work is concerned with the formulation of hyperelastic~thermodynamic-based

models for associated elastoplasticity with non-linear isotropic and kinematic hardening valid for
both large elastic and large plastic deformation. On this basis, one can then introduce explicitly the
assumptions of (I), small incremental plastic deformation, and (2), small elastic strain, into the
general model and obtain special cases whose behaviour corresponds to that of various classical
hypoelastic formulations. In particular, these are obtained on the basis of two different ther­
modynamic formulations for kinematic hardening with respect to the intermediate configuration.
The simplest of these, in which the plastic part of the free energy does not depend explicitly on the
plastic deformation, leads for example to Jaumann- or Green~Naghdi-hypoelastic-typebehaviour
for linear kinematic hardening in simple shear. In particular, the former case is obtained in this
context when the plastic spin is assumed constant and equal to zero, and the latter case when the
plastic rotation is assumed constant and equal to the identity. Allowing the plastic part of the free
energy to depend explicitly on the plastic deformation yields the second thermodynamic model for
kinematic hardening considered in this work. Here, again in the special case of linear hardening,
Oldroyd-like behaviour for the shear stress and back stress, but not for the normal stress, is obtained
in simple shear. © 1998 Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

The formulation and numerical implementation of finite elastoplasticity models involving
damage and/or hardening processes in metals has traditionally been based on the assump­
tion that the elastic deformation in such materials remains "small", justifying in turn a
hypoelastic, rate-based formulation for the stress. In this regard, considerable effort has
been spent over the years in attempting to find the "appropriate" objective derivative for
the stress (e.g., Dienes, 1979; Atluri, 1984; Szab6 and Balla, 1989), The difficulties here are
at least two-fold: (1), there are many possible "objective" derivatives, and more critical,
(2), most of corresponding hypoelastic formulations are not compatible with a consistent
linearization of "exact" non-linear hyperelasticity (Simo and Pister, 1984; Simo and Ortiz,
1985), in part because only the stress rate, and not the corresponding elasticity tensor,
varies in the process. For the purely elastic case, this issue has been discussed in detail by
Peric (1992), who examined the problem from the point of view of conjugate stress and
strain pairs, showing how non-linear hyperelastic formulations based on these reduce under
the assumption of small elastic strain to various hypoelastic cases.

In the present work, an algorithmic formulation of associated elastoplasticity with
non-linear isotropic and kinematic hardening for large elastic and large plastic deformation
is carried out on the basis of a recent thermodynamic approach (Svendsen, 1998a) to the
formulation of kinematic hardening models at large deformation, In this work, attention
is restricted to the local algorithmic formulation and numerical integration of the material
model; the formulation of the corresponding consistent tangent operator and finite element
implementation will be discussed in a future paper. One form of the model has already been
applied to the finite element modelling of the effect of kinematic hardening on crack
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propagation and residual stresses at the crack tip in steels which arise during cyclic loading
(Arndt et al., 1997).

Alternative thermodynamic formulations of kinematic hardening at large deformation
can be found in, e.g., Dogui and Sidoroff (1985), Haupt (1995), Tsakmakis (1996), and
Sievert (1997). Beyond the desirability of representing true elastic material behaviour, one
of the advantages of such a thermodynamic-hyperelastic approach to the formulation of
large deformation elastoplasticity (e.g., for metals) is that assumptions such as small
incremental plastic deformation and small elastic strains are and must be introduced
explicitly into the general form of the model (i.e., that holding for arbitrary elastic and
plastic deformations) in the process of deriving its algorithmic form. This is of course in
contrast to a hypoelastic-based formulation, in which these assumptions are "somehow"
already incorporated into the material model from the start. In addition, as we show in this
work, following an approach in which such assumptions must be introduced explicitly into
the formulation yields additional relations between the variables of the model, in particular
between the elastic and plastic rotations, as well as between the elastic rotation and plastic
spin, which hold under the assumptions of small incremental plastic deformation and small
elastic strain, which do not arise in a hypoelastic-based approach.

To begin, we review the basic aspects (Section 2) of a recent thermodynamic for­
mulation of elastoplasticity with non-linear isotropic and kinematic hardening at large
deformation (Svendsen, 1998a, b), in particular focusing on the thermodynamic formu­
lation of the constitutive relations for stress and back stress. Next, the concrete form of this
formulation for the case of Armstrong-Frederick kinematic hardening is introduced and
discussed (Section 3). In the context of associated plasticity (Section 4), we then turn to the
algorithmic formulation of the model (Section 5) via the usual exponential and backward­
Euler integration. The resulting algorithmic form of the two models, which holds for large
elastic and plastic deformation, is then simplified to the case of metal plasticity (Section 6)
with the help of the assumptions of (1), small incremental plastic deformation, and (2),
small elastic strain. After summarizing the algorithmic formulation (Section 7), and review­
ing briefly some existing thermodynamic formulations for kinematic hardening (Section 8),
we then turn to a comparison of these with the current formulation in the standard context
of simple shear (Section 9). Finally, general aspects of these various formulations for
kinematic hardening at large deformation are discussed (Section 10), and in particular their
general relation to classical hypoelastic-based formulations, which are reviewed briefly in
the Appendix.

Finally, a word on notation. Let bold, upper case italic letters such as D, F and T
represent second-order Euclidean tensors, or time-dependent fields of such tensors, and
slanted sans serif characters such as C fourth-order Euclidean tensors. In particular, let I
and 1represent the second- and fourth-order identity tensors, respectively. The inner product
A . B:= tr(ATB) of two second-order Euclidean tensors A and B will be used often in what
follows; here, tr(A) represents the trace, and AT the transpose, of any A. Besides tr(A), we
also work with the square sq(A):= AA := A 2 and cube cu(A):= AAA := A 3 functions on
second-order Euclidean tensors A. The inner product on such tensors yields in particular
the magnitude IAI:=~ of any A. Finally, let (A):= ~(A +AT), skw(A):= ~(A _AT),
sph(A) := ~ tr(A)I, and dev(A):= A - sph(A), represent the symmetric, skew-symmetric,
spherical, and deviatoric, parts, respectively, of any A. As such, sph = ~(l ® I), and dev =

1- sph. For simplicity, it proves advantageous to abuse notation in this work and denote
functions and their values by the same symbol. Other notations and mathematical concepts
will be introduced as the need arises in what follows.

2. BASIC MODEL CONSIDERATIONS

In this work, attention is focused on the material behaviour of a single, but otherwise
arbitrary, simple, non-polar material point or element of some material body. Assuming
isothermal conditions for simplicity, the deformation gradient F represents the basic "exter­
nal" or "observable" independent constitutive variable here. Beyond F, we assume that the
dependent constitutive variables depend in addition on a set' of deformation-like internal
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variables accounting for the effects of inelastic deformation, as well as of isotropic and
kinematic hardening, on the material behaviour. On this basis, the constitutive relations in
the current elastoplastic context include the material frame-indifferent forms

!/J = !/J(C,{, C)

S= S(C,{,C) (I)

for tae referential free energy density t(i and second Pio{a-Kircnnotf stress S, C,= FTF
representing the right Cauchy-Green deformation tensor. As usual, S is related to the
Kirchhoff K:= det(F)Tand Cauchy T, stress tensors via S:= F-1KF- T . Analogous to (I),
we have the basic material frame-indifferent form

I(C,{,C)~O

I(C,{,C) > 0
(2)

fer the evolution o((in a ~iven Qrocess (£, i1 relative. (0 a {oadin~ (uuc({OU {(e..~., Lu6{{ue.t,
1'97)), 11'1to I < l), 1= /) emol > /), respecthre)J', corres(70oo10g to llO)OaOtog, oelltra), alla
loading, processes, respectively. In writing (1) and (2), we have taken advantage of the fact
that such variables can always be expressed in an observer-invariant fashion. As usual, the
constitutive relations in (I) are rate-independent when they are positive homogeneous of
degree r, In C, ana tnose in (:2) represent suen benaVl OUT wnen tney areposjtive nomogeneous
of degree I in C.

In the context of certain additional continuity and/or differentiability assumptions on
the constitutive relations, as well as their rate-independence, one can show that (I) and (2)
sa'"\ib'fy ;:-''rL~ ;m~Yf',rhhb"dilTh'"\imr ~~,al:" ;m,'tf\11fl.1ty

(3)

in any process when (i), !/J is actually independent of C, and (ii), S is given by its hyperelastic
fIDTm. ·}.e..•

In this case, b reduces to

!/J = !/J(C,{),

S= 2!/J,c.

bp = bp(C, {, C)

= -!/J,,"',

(4)

(5)

representing ;'ne so-ca\\eo p\astic oissipation function. Note tnat tne system compliseo oS
(2) and (4) is "closed" in the sense that, given concrete, physically reasonable forms for (2)
and (4)1> we could solve the former in a given process for {, and so obtain Svia (4h, Since
such forms are in genera} not available to us, however, further constitutive assumptions are
necessary.

On the basis ofrheological and other considerations (e.g., Dogui and Sidoroff, 1985;
Maugin, 1992; Haupt, 1995; Svendsen, 1997a, b), in particular those concerning kinematic
hardening, we next assume that !/J can be split into elastic !/JE and inelastic !/Jp (i.e., plastic)
parts. In addition, let'; consist of the pair (P, ~), where P representst the plastic deformation
or transformation, and ~ additional deformation-like internal variables having to do with
isotropic and/or kinematic hardening. Assuming as usual that isotropic and kinematic

t Here, we are using Mandel's (1972, 1974) notation for this quantity. In what follows, we relate it to the
usual plastic deformation "gradient" Fp •
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hardening do not influence the elastic response of the material, the elastic part l/JE does not
depend on the ~, and so takes the form

(6)

via (4)1' On the other hand, the plastic part l/Jp of l/J does not depend on the current state
of deformation, i.e., on C, yielding

(7)

again via (4), and' = (P, ~). Special forms of this last relation have been considered by,
e.g., Dogui and Sidoroff (1985), Haupt (1995) and Tsakmakis (1996) in conjunction with
kinematic hardening, as will be discussed in more detail below. Together, then, (6) and (7)
lead to the particular constitutive form

(8)

for l/J from (4), with' = (P, ~).

As is the case in crystal plasticity, we next assume in the more general phenomenological
context being considered here that P does not affect the form of the elastic constitutive
relation (4h- As discussed in detail in Svendsen (l998a, b), this will in fact be the case when
the elastic part l/JE of l/J in (8) takes the special formt

(9)

yielding the form S = 2l/J.c = 2P- 1({)E,rTcp-,P-T for the elastic constitutive relation. The
restriction (9) then yields the simplified form SE = 2({)E,C

E
of S = 2l/J.c, with CE,= P- TCp- 1

,

SE,=pSpT and ({)E = ({)E(CE), Further, since p-TCP-' = (FP-')T(FP-l), (9) also implies
that the deformation measure

E:=FP-', (10)

such that CE = ETE, is directly associated with the elastic response of the material. Since
the constitutive forms SE = 2({)E,C

E
and ({)E = ({)E(CE) coincide with those commonly assumed

in the usual formulation of hyperelastoplasticity as based on the elastoplastic decomposition
F = FEFp of F, we see that, at least from the material behaviour point ofview, the assumption
that P preserves the form of 2l/J.c lies behind the decomposition F = FEFp • In this case,
then, we may associate P with Fp , and E with FE' On the other hand, in lieu of such an
assumption, there is no reason from a constitutive point of view to relate P and F to each
other via a relation of the form E = FP- 1 at all.

Besides the reduced form (9) for l/JE, the assumption that P does not affect the form of
(4h, together with the form (8) for l/J, results in that

(II)

for the quantity -l/J,p thermodynamically conjugate to Pin (5) via the chain rule, where

(12)

represents the Mandel stress tensor (e.g., Mandel, 1972, 1974; see also Lubliner, 1986;
Miehe, 1994). Substituting (II) into (5) then yields the form

t This condition on the form ofthe dependence of l/JE on P represents a particular kind ofmaterial isomorphism
(e.g., Noll, 1967, 1972), in particular, P then represents an elastic material isomorphism; see also Bertram (1993).
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bp = bp(C, P,~, C)

= [M_ljJp,ppT] •Lp_IjJP.~ •~
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(13)

for the plastic dissipation function bp , again with' = (P, ~), where we have introduced the
usual form

(14)

for P in terms of the plastic velocity "gradient" L p• As such, (13) implies that the difference
M _ljJp,ppT is thermodynamically conjugate to L p. In the context of an associated formu­
lation ofelastoplasticity as based on the notion of elastic range, or more specifically, a yield
function, the form of (13) is then consistent with an interpretation of the quantity

(15)

as the centre of the elastic range of the material in the context of (8), i,e., the so-called back
stress.

Many polycrystalline materials, in particular many metals, can be considered, even
after plastically deforming (but before significant texture development occurs), to behave
(at least approximately) elastically isotropically, Restricting ourselves to such materials in
this work, we assume that IjJ is isotropic with respect to the intermediate configuration. In
particular, this implies that qh is an isotropic function of CE, in which case (12) reduces tot

M = <i?E,lnVE ' (16)

where In UE represents the elastic logarithmic right stretch. This last form can be obtained
from (12) in the context of elastic isotropy by, for example, working with the spectral form
of these relations. A second consequence of the assumption that IjJ is isotropic with respect
to the intermediate configuration is the reduction of IjJp to the form

(17)

(Svendsen, 1998b), where Cp := pTp is the plastic right Cauchy-Green deformation tensor.
This last reduction in the symmetric form

(18)

for X from (15). Consequently, in the current thermodynamic approach, both M and X are
symmetric when IjJ is isotropic with respect to the intermediate configuration, reducing bp
in (13) to

where

bp = bp(CE , P,~, C)

= [M-X]'Dp-ljJp,~'~' (19)

(20)

represents the symmetric part of L p as usual.
Lastly, note that the relation K = FSFT between the second Piola-Kirchhoff and

Kirchhoff tensors, as well as (4h, (8), (9) and (12), lead to the form

t Note that In U = ~ln(C), and that In(C) is an isotropic function of C.
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(21)

for K in terms of M. By analogy, the form A of X with respect to the actual configuration
is defined as

(22)

Since M and CE (or UE) are coaxial in the case of elastic isotropy via (12), (21) reduces to

(23)

in this case via the polar decomposition

(24)

of E. On the other hand, UE and X are in general never coaxial; in the context of small
elastic strain, however (22) does reduce to the form (23), as we shall see below.

3. ARMSTRONG-FREDERICK KINEMATIC HARDENING

To investigate the above formulation further, we consider in this section its spe­
cialization to the model ofArmstrong-Frederick (1966) for non-linear kinematic hardening.
The original form of this model was limited to small deformation, and for such deformations
has been extended and formulated in a thermodynamic context by Chaboche and his
collaborators (see, e.g., Chaboche, 1993). Various non-thermodynamic generalizations of
this model to the large deformation case have been proposed on micromechanical (e.g.,
Dafalias, 1983, 1985; Loret, 1983; Aifantis, 1987, 1995) and/or phenomenological (e.g.,
Haupt and Tsakmakis, 1986, 1989; Svendsen and Tsakmakis, 1994) grounds. Phenom­
enologically, both cases can be represented with respect to the intermediate configuration
by the classical Armstrong-Frederick rate form

(25)

*for the evolution of X, again with respect to the intermediate configuration. Here, X
represents some time derivative of X, c represents the usual Armstrong-Frederick linear
hardening parameter, and z the corresponding saturation variable. In the simplest case, z
is given by

z = bs, (26)

with b the classical Armstrong-Frederick saturation parameter, and s the plastic arc-length,
i.e., S = IDpl.

As shown by Svendsen (1998a), one obtains from (8) and (18) the Armstrong­
Frederick form (25) with respect to the intermediate configuration when ljJp is given by

(27)

where now l; = (Y, e). Here, Y is a strain-like internal variable associated with non-linear
kinematic hardening determined by the evolution relation

(28)

in the Armstrong-Frederick case. Further, e is a strain-like internal variable associated with
isotropic hardening. On the basis of (27), X then takes the explicit form
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x = C[pypT -~I]

as a function Y from (18). In this case, (18) also yields the form

* .
X= X-LpX-XL~
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(29)

(30)

*f([)T .x appeaim.!11n pS).l'ne eVD~1JIJDnre~a'IJDn P~) 'iDr Y, anD IDe pm"}JCWM JOmJ pJ) 'jDJ

ljJp, reduce (jp to

(jp = (jp(C, P, y, e, C)

= [M-X)'Dp+c[~Cp' y-~]t+a8

from (19), where we have now introduced the yield stress

a:= -ljJ .• = h'.

(31)

(32)

With c > 0 and t > 0, note that the condition Cp ' Y = /. pypT ~ ~ is, in the context of
(26), sufficient to insure that the internal dissipation rate density is non-negative in all
admissible inelastic processes. In particular, since the initial value X(O) of X is zero, we
have Y(O) = ~J from (29), jn whjch case Cp(O)' Y(O) = J. P(O) Y(O)PT (0) = !j.] = ~.

Initially, then, this condition is satisfied identically.

4. ASSOCIATED PLASTICITY FORMULATION AND MODEL SUMMARY

In the context of elastic isotropy, the above formulation can be embedded directly into
the framework ofassociated plasticity (e.g., Lubliner, 1984). As is weH-known, in this case,
the elastic range of the material is given by a yield function

¢ = ¢(M-X,a):::; O. (33)

In view of (12), (15) and (32), we see that ¢ can also be expressed as a function of C, P, Y
and e. In addition, in this case, the loading function I appearing in (2) takes the special
form I(C, P, y, e, C) := ¢oc' C. Further, the plastic deformation rate Dp is assumed to take
the usual "normal" form

(34)

in the associated case, Abeing the so-called plastic multiplier, with A~ 0 sufficient to insure
(l?",? \)'W~"Cll M~. ~" -)10 \:'~ll~"CA. hlo -)10 "'a\1o~ ~"C\\-~ll~~~. ~~"Cll \.~-)10 \"'a\.\."Cl \:'~ll~-)\.-)~ll ~~\~~. \.~"C

normality relation (34) is equivalent to the assumption that (jp is maximal for M on the
boundary of the elastic range, i.e., maximal for values of M satisfying ¢(M- X, a) = O.
ide assoclinea' iormmlntbn i!,-compi!:leU' oydle- sD-ca-iU:U'cunsiintncycumnthnl'

¢=O (35)

([mnnj1)DaUm~1 l'el}mnnj1 'l'we 'Sl'a'lt '\0 l'tTIl"'a)1) \)1) 'l'we't>\)I.\1)"tl"'a!y \)'i'l'nt "C)"'a'Sl)\:, i'all~"C "tll.\nl1~

(plastic) loading processes. As usual, this last relation determines A.
As evident from (19), in the context of elastic isotropy, only the symmetric part Dp of

Lp is constrained thermodynamically in the context of maximal plastic dissipation, motiv­
i1'l'~"W ~'l'i' p'c?l"t'~~aful~ ~'l'§ coY...e.fi%\>0~...w C&WfX?~~~~ i%\"emil:?~~b ~&,,~~;£'~~,-e- ~&"'m ~J4->.

Tnis beIng (de case, a cons(iun'ive form i'orrit~sKew~symm~tiqYar(of-
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(36)

of L p, which is related to the "plastic spin" (i.e., as defined by, e.g., Dafalias, 1983, 1985),
must in general be formulated on the basis of other considerations. Since it is not the
purpose of this work to investigate true constitutive models for Wp (e.g., Dafalias, 1985;
Paulun and Pecherski, 1987, 1992; Aifantis, 1987, 1995), we focus on the cases in which it
is either (I), set to zero (as done in, e.g., Eterovic and Bathe, 1990, or Weber and Anand,
1990), or, (2) determined in the framework of small elastic strain, in what follows.

To summarize, then, the model for hyperelastoplasticity with isotropic and Armstrong­
Frederick kinematic hardening at large deformation formulated in this work consists of the
evolution relations

Ii = Lp(C, P, Y, e, C)P

y = b[~Cp' - Y] IDpl,

t = t(C, P, Y, e, C),

if> =0, (37)

during loading for the independent variables P, Y, e, and Ie, respectively, from (2) with
, = (P, Y, e), (14), (28), (26), and (35), with

(38)

from (20), (34) and (36), as well as the auxiliary relations

E= FP-',

x = c[PypT -~l],

a = h'(e),

o~ ¢(M-X,a) (39)

from (10), (16), (29), (32), and (33), respectively.
This completes the model formulation. Our next task is the numerical integration of

the evolution relations and formulation of the resulting algorithmic form of the model
required, e.g., for the finite element implementation of the model.

5. NUMERICAL INTEGRATION

Following Eterovic and Bathe (1990), and Weber and Anand (1990), the hyp­
erelastoplastic algorithm to be developed here is based on a direct implicit time integration
of (37) over a time interval [tn> tn + d. In particular, assuming L p is approximately constant
in this interval, such integration of (37), yields

(40)

with

(41)

the corresponding time step, and
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ro I
exp(A):= L - An

n~l n!
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(42)

the usual exponential mapping. For notational simplicity, we neglect from now on the
subscript n+ I on the corresponding algorithmic quantities when no confusion should arise.
On the basis of the multiplicative relation (39)], (40) takes the alternative form

(43)

in terms of E and the quantity

(44)

representing the so-called trial elastic deformation, with

(45)

the prescribed relative deformation. Because M is directly related to the elastic deformation
via (39)2' it turns out to be more convenient numerically to work with the form (43) of (40)
in terms of E; in the process, we replace P by E as an independent variable in the
(algorithmic) formulation.

Next, we obtain the general algorithmic form for (37)2 with (39h associated with the
thermodynamic formulation of Armstrong-Frederick kinematic hardening being con­
sidered in this work. To do this, it turns out to be more convenient to work algorithmically
with the "push-forward"

Z:=pypT

of Y to the intermediate configuration. With respect to Z, X takes the form

X = c[Z-~l]

via (29), with

and so

(46)

(47)

(48)

(49)

In view of (46)-(49), then, backward-Euler integration of (37h leads to the following
algorithmic form

(50)

for this evolution relation in terms of Z with respect to the intermediate configuration.
Together with (43) and (50), then, backward-Euler integration of the remaining evol­

ution relations in (37) yields the set

Elr = Eexp(rLp),

Zn = exp(rLp)-1 {Z-b[~I-z]lrDpl}exp(rLp)-T,

0= ¢, (51)
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of non-linear algebraic relations for the independent variables E, Z, B, and

Y:=TA, (52)

respectively, of the algorithmic form of the model. The initial values of the inelastic variables
of the model are as usual those at time t = tm and we have used the fact that cPn = 0 in
writing (51)4' With the help of (39) and (46), the solution of (51) yields M, X, a and Y, all
at t = tn+ l' In turn, the Kirchhoff stress K and its back-stress counterpart A with respect
to the current configuration are obtained from these via (23) and (22), respectively.

6. SMALL INCREMENTAL PLASTIC DEFORMATION AND SMALL ELASTIC STRAIN

The algorithmic system (51), together with (39) and (46), describes elastoplastic
material behaviour with non-linear isotropic, and Armstrong-Frederick kinematic, hard­
ening for arbitrarily large elastic and plastic deformations. In this general form, however,
it cannot be solved exactly, a fact due in essence to the exponential term exp(TLp) appearing
in (51) 1.2' To proceed further, then, we follow Eterovic and Bathe (1990) in assumingt that
the magnitude

(53)

of the incremental plastic deformation TLp is much less than one. Since ITLpl =
jTDpl + IT Wpl, this requires both ITDpl and IT Wpl to be so as well. On this basis, the
expansiont

from (42) leads to the O(B~)-approximations

Etr = E[I+TLp]+O(B~),

Zn = Z-b[~I-Z]jTDpl-[TWp,Z] -<TDp, Z)+O(B~),

(54)

(55)

to (51hz. Here, [A,B] :=AB-BA represent the Lie bracket of any two second order
tensors A and B, and <A, B):= AB+BA their Jacobi bracket. With (51hz replaced by their
corresponding approximations (55)[,z in (51), the resulting system becomes numerically
tractable (subject of course to having constitutive forms for quantities such as cP and Wp).

To incorporate further simplifications into this system, it is useful to use the polar
decomposition (24) of E to "split" (55)[ into the algorithmic form

(56)

for CE (and so VE), as well as that

(57)

for RE , both as in (55)1 to O(B~). That RIREtr (and so RE ) as given by (57) actually represents
a rotation [i.e., to O(B~)] can be shown using the definition of a rotation and (56). In this
case, (51) is replaced by the system

t To be more specific, Eterovic and Bathe (1990) assumed IrDpl « I and Wp = o.
t Note that this expansion holds exactly when L p is nilpotent of index 2, i.e., L~ = 0 but Lp '" O. This would

be the case, for example, if P represented a simple shear.
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CElr = CE - [TWp , CE ] + <TDp , CE ),

Zn = Z-b[~I-ZJITDpl-[rWp,ZJ-<rDp,Z),

0= ¢,

3373

(58)

of non-linear relations to O(e~) involving the variables CE, Z, e and y. Solution of this last
system yields then CE (and so UE) and the other (plastic) deformation quantities. In turn,
UE can then be used to solve (57) for RE , and so obtain E. The rest is the same as before.

A further simplification of the model arises when we restrict attention to materials
whose elastic ranges are "small" in the sense that the magnitudes of the yield stress and
other internal variables are such that the boundary of the elastic range is reached before
(at least a part of) the magnitude of elastic strain becomes "large". The classic example of
such materials is of course metals. In the current isotropic hyperelastic context, the strain
measure involved is the elastic right logarithmic stretch In UE, as appears in (16). More
specifically, in the case of elastic isotropy and von Mises plasticity, for example, note that
only dev(ln UE) would necessarily remain "small", i.e., sph(lnUE), and so lin UEI =
Isph(ln UE)1+ Idev(1n UE)I, could still be "large" in this case. On the other hand, if yielding
also depends on volumetric processes, e.g., damage, it may be that In UE itself would remain
"small". For simplicity, however, we restrict ourselves to von Mises plasticity in the rest of
this work. As such, it is useful to work with the particular isotropic form

for q>E depending explicitly on the independent invariants

lEI := tr(sph(1n UE» = tr(1n UE ),

I E2 := tr(sq(dev(ln UE)))'

I E3 := tr(cu(dev(1n UE)))' (60)

of sph(ln UE) and dev(1n UE). Substituting this into (16) yields then the particular isotropic
form

for M in terms of sph(1n UE) and dev(ln UE)·

In effect, the condition of small elastic strain represents an implicit restriction on the
magnitude of the yield stress (J" as a function of the magnitudes of the elastic constants and
the inelastic variables such as X. Roughly speaking, this condition will hold when the
magnitude of the yield stress is and remains small compared to that of the elastic constants.
For example, in the simple case of von Mises plasticity without kinematic hardening, we
have the condition

(62)

for the boundary of the elastic range from the corresponding yield relation. Expanding now
M as given in (61) about the state dev(1n UE) = 0, we obtain

M = MldeV(lnVE)~o+M.dev(lnUE)ldeV(lnVE)~o[dev(1n UE )] +O(ldev(1n UE)1 2
)

= q>E,lElldeV(lnUE)~OI+ 2q>E,lE2 Idev(lnUE)=o dev(ln UE ) + O(ldev(ln UE ) 12). (63)
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Here, <'PE,lElldeV(lnVE)=o and <'PE,lE2 Idev(lnVE)=o are of course (still) functions of sph(ln UE), whose
magnitude could in general be "large". Substituting (63) into (62) then yields the condition

on the maximum magnitude of dev(ln Ud attainable in the von Mises context. With t1 - 1
GPa, and <'PE,lE2 Idev(lnVE)=O - 100 GPa, for example (i.e., typical order of magnitude values
for metals), (64) would imply Idev(ln UE)I :( 10-2

•

Restricting ourselves now to this case, i.e., when

BE:= Idev(ln Udl « 1 (65)

holds, it is physically reasonable to work in the algorithm with the approximate, linearized
form

from (63h of the isotropic hyperelastic constitutive relation (61), where

(67)

(recall that dev = 1- sph; see Section 1) represents the isotropic elasticity tensor at
dev(ln UE) = 0,

(68)

being the corresponding bulk and shear moduli, respectively, with respect to this state.
Additional simplifications of the algorithm can be obtained on the basis of the relation

UE = exp(ln Ud = exp(sph(ln UE»exp(dev(ln UE»= etr(lnVE)[I+dev(ln UE)+O(B~)l

(69)

via (42). In particular, we obtain from this the approximation

(70)

for the current configuration form A of the back stress given in (22). In addition, the
multiplicative decomposition

of F from (10) reduces to the form

F=EP (71)

via (69) and the polar decomposition

(72)

(73)

of P. The result (72), when combined with the uniqueness of the polar decomposition of F,
yields the approximations



Hyperelastic models for elastoplasticity at large deformation 3375

(74)

to O(eE)' representing generalizations of similar relations obtained by Bammann and John­
son (1987) to the case when Isph(ln UE)I may be large.

Finally, consider the algorithmic elastoplastic relations (56) and (57) for CE and
R~REtn respectively. In particular, on the basis of (69), the first of these reduces to the pair
of relations

sph(ln UEtr) = sph(ln UE) + O(e~p),

dev(ln UEtr) = dev(ln UE)+rDp+O(e~p), (75)

for the elastic logarithmic right stretch with tr(Dp) = 0 in the context of associated von
Mises plasticity, where eEP:=~' Likewise, the results (69) and (75) lead to the approxi­
mation

R~REtr = l+rWp+rDp+dev(ln UE)-dev(ln UEtr)+O(e~p)

= l+rWp+O(e~p), (76)

to (57) for the relative elastic rotation R~REtr to the same order. Together with this last
result, (74)] implies that RE, R p and r Wp, are, to O(eE)' not all independent.

In the context of the assumption that l/J is isotropic with respect to the intermediate
configuration, we see in particular that the material isomorphism condition (9) on P reduces
to l/JE(C,P) = (fJE(Up ICUp I). In addition, as already discussed above, we have then
l/Jp(P,~) = l/Jp(Cp,~) in (17). Consequently, l/J is independent of R p in this case. Since Rp is
not otherwise a part of the model, it is then in particular free to choose, the simplest choice
being of course R p = I. The consequences of this and other aspects of the model will be
investigated further in Section 8 in the context of simple shear.

7. SUMMARY OF ALGORITHM

In the context of backward-Euler integration, small incremental plastic deformation
and small deviatoric elastic strain, then, the original system (37) ofmodel evolution relations
reduces to the algorithmic form

sph(ln UEtr) = sph(ln UE),

dev(ln UEtr) = dev(ln UE) + rDp,

Zn = Z-b[~/-z]lrDpl- [rWp,Z] -(rDp,Z),

0= ¢, (77)

via (58) and (75) for the variables In UE, Z, e, and y, respectively, with the relations for
In UEholding to O(e~p). In this system appears the Mandel M, back X, and yield (1, stresses,
given by

M = CE[ln UEI,

X = c[Z-~l],

(1 = h'(e), (78)
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from (66), (47), and (32), respectively, where (78)[ holds to O(eD. The trial values for the
elastic quantities utilized in the predictor-corrector approach are given as usual by

REtr = R(Etr ),

In VEtr := ~ In(E;I;Etr), (79)

via (44). Finally, as discussed at the end of the last section, in the case that ljJ is isotropic
with respect to the intermediate configuration, it is natural to assume R p = I; from this, we
have

(80)

from (74)[ to O(eE ), and so

(81)

from (76) to O(e~p).

Solution of (77) with (78)-(81) yields the current values of M, X, (j and y. These first
two then determine the corresponding Kirchhoff stress K and back stress A, with respect
to the actual configuration via

K= REMR~,

A = REXR~, (82)

[the latter to O(eE)] from (23) and (70), respectively. The next step is to investigate the
behaviour of the current model, as well as some existing thermodynamic formulations for
kinematic hardening, in the context of simple shear. Before we do this, however, we turn
first to a brief review of these existing formulations and a comparison of these with the
current formulation.

8. COMPARISON WITH PREVIOUS FORMULATIONS

The approach to the formulation of kinematic hardening taken in the current work is
conceptually consistent with the first approach of Dogui and Sidoroff (1985) in the sense
that ljJp is assumed to depend explicitly on P (i.e., on Fpin their case). Indeed, in the context
of isotropic material behaviour, they assumed the isotropic form

(83)

of ljJp from the start, and so obtained that

(84)

for X as a function of the plastic form Bp of the left Cauchy-Green deformation B:= FFT
•

As discussed in more detail elsewhere (Svendsen, 1998b), such a constitutive form for ljJp
can be obtained in the current formulation when (1), ljJ is isotropic with respect to both the
reference and intermediate configurations, and (2), ljJp is independent of ~. Because of
this last assumption, their formulation does not encompass Armstrong-Frederick-type
kinematic hardening. A related, more recent formulation incorporating a model for large­
deformation Armstrong-Frederick-type kinematic hardening can be found in Haupt (1995).
He assumed the isotropic form
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(85)

for t/Jp, with Ap := 1(1- Bp 1) the plastic Almansi strain tensor, and Ya strain-like internal
variable accounting for non-linear hardening, analogous to the internal variable Yused in
the current formulation. Rather than obtaining a relation of the form (15), however, he
defined the back stress as

X:= [I + 2(A p - Y)]t/JP.A p - Y, (86)

a form motivated by that of the Mandel stress M as given in (12). This was also done by
Tsakmakis (1996), as we discussed below.

In a second approach also discussed by Dogui and Sidoroff (1985), t/Jp is assumed to
be independent of Fp ; such an approach (at least tacitly) assumed in the thermodynamical
formulation of, e.g., Chaboche (1993) (when generalized to large deformations), or that of
Tsakmakis (1996). In these cases, one usually works with the simple "quadratic" form

t/Jp(rJ., e) = ~crJ.· rJ.- h(e) (87)

for t/Jp in terms of the strain-like internal variable rJ., whose evolution is governed by the
Armstrong-Frederick form

(88)

(i.e., neglecting static recovery) generalized to the intermediate configuration here. Finally,
he assumes that the back stress is thermodynamically conjugate to rJ., i.e.,

X:=t/J.~ = CrJ..

On the other hand, Tsakmakis (1996) defined the back stress as

(89)

(90)

again analogous to the structure of the Mandel stress, as already mentioned above. In
addition, he assumes that rJ. evolves in an Armstrong-Frederick fashion relative to the flow
of Fp , i.e., according to

(91)

rather than relative to the intermediate configuration directly via the form (88).
In the simple shear comparison to follow, we restrict ourselves to the generalization of

the Chaboche (1993) approach to the intermediate configuration, as embodied by (88) and
(89). In particular, backward-Euler integration of the former relation then results in the
algorithmic relations

X= CrJ., (92)

to determine X in the context of this class of models. In particular, these compare to (77h
and (78h, respectively, in the current formulation. All other aspects of the two formulations
are the same.
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9. SIMPLE SHEAR COMPARISON

In this section, we investigate the behaviour of the current formulation as embodied
by (77) with (78)-(81), in the standard context of simple shear. We do this as well for the
formulation following from the Chaboche (1993) approach generalized to the intermediate
configuration, in which (77)3 and (78h are replaced by (92)l,2, respectively, in the formu­
lation. In the process, we focus in particular on the effect of Wp or R p on this behaviour.
To do this, we solve these two algorithmic formulations using the predictor-corrector
approach for the case of two-dimensional simple shear, where the input is a shear of 500%
in the x[ direction. In the calculation, we assume a value for Young's modulus of21O GPa,
and one for Poisson's ratio of 0.3, these being typical of steels. To keep things simple, we
neglect isotropic hardening, and so work with a constant yield stress (J of 0.5 GPa (again
typical of steels). Finally, again for simplicity, we neglect saturation, focusing as such solely
on linear kinematic hardening with c = 1 GPa, in what follows.

We begin with the Chaboche case, described algorithmically by the system (77h2.5 and
(92)1 in this case, with (78)[, (79) and (92h. Consider first the case Wp = 0, which one finds
explicitly or tacitly in, e.g., Eterovic and Bathe (1990), Weber and Anand (1990), Simo
(1992), Zavaliangos and Anand (1993), and many others. In this case, (76) reduces to

(93)

[to D(BE)]' As such, R p is determined by Rand REtr. The results for the II, 22 and 12
components of K and A in this case as obtained from (82) are displayed in Fig I(a). As
shown there, one obtains oscillatory stresses in this case; in fact, these hyperelastoplastic
results correspond exactly with the case of Jaumann-hypoelastoplasticity with linear kine­
matic hardening (e.g., Nagtegaal and Dejong, 1981), shown for comparison in Fig. l(b).
That neglecting the "plastic spin" Wp leads to such behaviour has long been known in the
hypoelastoplastic context (e.g., Dafalias, 1985; Tvergaard and Van der Giessen, 1991); the
results in Fig. 1(a) confirm this in the corresponding hyperelastoplastic case.

Less well-known are the results obtained by assuming R p = I instead of Wp = 0, in
which case we have

(94)

again from (76). Here, then, r Wp is determined by Rand REtr . The results for the 11, 22
and 12 components of K and A in this case, again obtained from (82), are shown in Fig.
2(a). Analogous to the previous case, these results for K and A correspond exactly to those
obtained for the hypoelastoplastic model for linear kinematic hardening based on the so­
called Green-Naghdi rate; the analogous results for this latter case are shown in Fig. 2(b).
This rate can be found in Truesdell and Noll (1965, 1992, Section 36), Green and Naghdi
(1965), and was incorporated into the context of modern or "generalized" hypoelasticity
by preen and McInnis (1967). More recently, it has been investigated by a number of
authors, in particular Dienes (1979, 1986) as a physically more reasonable model than the
Jaumann-based form in the sense that no stress oscillations are observed under (monotonic)
simple shear. In the context of hypoelastoplasticity and hypoviscoplasticity, it has been
utilized and discussed, e.g., by Bammann (1990), and more recently by Arndt et al. (1997)
in the context of a hyperelastoplastic model for ductile damage and crack growth in metals.

The correspondence in these two cases with Jaumann- or Green-Naghdi-based hypo­
elastoplasticity with linear kinematic hardening is the result of two factors: (I), small elastic
strains, and (2), the correspondence of the evolution relations for the back stress. Indeed,
Jaumann- and Green-Naghdi-hypoelasticity agree with the corresponding linearized hyper­
elastic relation (78)[ based on In UE up to about 100% shear in the case of simple shear.
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system (77),,2,5 and (92)" with (78)" (79), (92)" and Wp = O. Those in part (b) are from the

hypoelastoplastic Jaumann model. See text for more details.

The correspondence of the evolution relations for the back stress in each case can be
deduced from the result

A-[W-REWpRI,A) = REXRI+O(eE)

= cREDpRI - tA + O(eE)' (95)

which follows from (25), (89), (88), (70) and (A36h. Note that the time derivative in this
last form for the evolution of A is that appearing in the hypoelastoplastic form (A37) for
K. With the help of the identity
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Fig. 2. Same as Fig. 1 except with Rp = 1 instead of Wp = 0 (part a), and the Green-Naghdi instead
of Jaumann hypoelastoplastic model (part b).

(96)

which follows from (21), we also have

(97)

for the flow rule (34) relative to the current configuration and K; in particular, this last
result takes the form

(98)

in the case of elastic isotropy via (23). In the context of associated plasticity, (97) also arises
from the alternative form
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(99)

for the plastic dissipation rate (density) with respect to the current configuration in the
case of kinematic hardening alone from (21) and (22). So, together with the appropriate
hypoelastic Jaumann- or Green~Naghdi-form[see (A37) and following discussion in the
Appendix] for the evolution of K, (95) yields the corresponding evolution of A in the case
oflinear, or more generally, Armstrong-Frederick, kinematic hardening.

Finally, we consider the case of simple shear for the algorithmic system (77)1-3,5, with
(78)1,2 and (79), obtained in the current formulation. As discussed at the end of Section 6,
the isotropy of t/J with respect to the intermediate configuration leads further to the special
form Rp = I for R p , and so the algorithmic relations (80), (81), in this case. The results
corresponding to this case for the 11, 22 and 12 components of K and A from (82) are
shown in Fig. 3(b). For comparison, the corresponding Oldroyd hypoelastoplastic case is
plotted in Fig. 3(a), as based on (A39h and the corresponding Oldroyd form

(100)

for A when (98) is taken into account. The results for the shear stress and back stress in
Fig. 3(b) are very close to those of the Oldroyd hypoelastoplastic case in Fig. 3(a), but not
exactly the same. On the other hand, the normal stresses obtained in each case are different.
That the corresponding back stress components in each of these latter two cases should
both qualitatively and (almost) quantitatively be the same can be established on the basis
of the relation

A-LA-ALT = RE[X-LpX-XL~]R~-2DEA+O(SE)

= CREDpR~ - tA - 2DEA +O(SE), (101)

which follows from (22), (25), (70) and (30). The small deviation of the back stress in the
current formulation as compared to that of the Oldroyd hypoelastoplastic case can be
attributed to the term - 2DEA, which is very small here. Given the almost exact quantitative
agreement between the shear stress, as well as all back stress components, obtained from
the two models, the difference between the corresponding normal stresses must be attributed
to "small" differences in the elastic material behaviour modeled in each case. Indeed, as
shown in Fig. 4(a), differences in the increase of KL1 with increasing deformation between
the two models in the purely elastic case [i.e., as based on (66) in the hyperelastic, and
(A19h in the hypoelastic, case] arise for (shear) deformations on the order of 0.5% or
greater; on the other hand, as shown in Fig. 4(b), the corresponding elastic shear stresses
from each model agree with each other exactly. As already mentioned, this is in contrast to
the Jaumann- and Green-Naghdi-hypoelastic cases discussed above, in that these agree
with (66) in all stress components up to about 100% shear.

10, DISCUSSION

The various thermodynamic formulations for non-linear kinematic hardening at large
deformation discussed in this work can be compared with various existing mechanically­
based models and formulations. In particular, the micromechanical approach of Dafalias
(1983, 1985), Loret (1983), Aifantis (1987, 1995), Paulun and Pecherski (1987,1992), Van
der Giessen (1991), Tvergaard and Van der Giessen (1991), and others, as based on the
plastic spin, for both linear and Armstrong-Frederick kinematic hardening, can also be
formulated in the context of Chaboche's (1993) approach generalized to the intermediate
configuration, as discussed in Section 8. Indeed, the correspondence follows in essence from
the result (95) for the back stress, as well as compatibility between the form of the "plastic
spin" used by these latter authors (with respect to the actual configuration) and the
intermediate configuration quantity Wp appearing in the current work. To show this,
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compared with the Oldroyd hypoelastoplastic case (part a).

consider the multiplicative elastoplastic decomposition of Fused by Oafalias (e.g., Oafalias,
1985, 1993), appropriate (only) for the case of isotropic elastic material behaviour, which
takes the form

(102)

where VD represents the (left) elastic (stretch) deformation, and PD the plastic part, of F in
his formulation, and the subscript "0" stands for "Oafalias". Comparing (102) with the
form (10) of this decomposition used here, we obtain the identifications

(103)

via (24). Time differentiation of (103h then yields
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when we identify Dafalias's arbitrary spin (J) with RERi, i.e.,

With the help of his objective time derivative

for Po with respect to (J), (104h then yields

(104)

(105)

(106)
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(107)

(108)

via (36) between Dafalias's form WPD of the plastic spin with respect to the current
configuration and that Wp used here with respect to the intermediate configuration. This
last result shows that it is exactly Dafalias's form for the plastic spin which appears in the
current configuration form (95) for the evolution of the back stress formulated ther­
modynamically in this work in the case that P is considered not to be a hardening variable.

As discussed briefly in the text, from the point of view of small incremental plastic
deformations and small elastic strains, the results (74), and (76), central to the current
work, show that Rp , RE and Wp , are, to D(BE), not all independent. In this context, then,
constitutive assumptions involving Rp and Wp are not independent. In particular, as shown
in the text, assuming R p = I determines Wp purely kinematically, which may suffice for
some kinds of texture modeling, or modeling of the Swift effect, but not others (e.g.,
Bammann, 1990). Since (74), and (76) are independent of the assumption ofelastic isotropy,
note that they also hold in the more general case of elastic anisotropy, in which case the
assumption R p = I may make no sense (e.g., Svendsen, 1998b). In any case, this assumption
represents the simplest means in the current hyperelastoplastic context of avoiding the
famous shear stress oscillations during simple shear predicted by the laumann-based hypo­
elastoplasticity including kinematic hardening (e.g., Nagtegaal and Delong, 1981).

Among hyperelastic-based models for large deformation elastoplasticity, Weber and
Anand (1990) and Eterovic and Bathe (1990) assume Wp = 0 explicitly. As it turns out,
Simo (1992) assumes in his principal axis-based formulation of hyperelastic elastoplasticity
that the principle axes of the elastic left Cauchy-Green deformation are fixed during local
integration. In the current context, this amounts to assuming that RE = REtn or equivalently
from (76), that the plastic spin is identically zero, i.e., Wp = O. As such, his formulation is,
in the limit of small elastic strain, is also equivalent to laumann-based hypoelastoplasticity.
As we have shown in this work, such an assumption is in fact unnecessary, as Wp can be
determined purely kinematically, i.e., at least in the case of metals when the assumption of
small elastic strain applies.

The majority of existing numerical implementations of large-deformation hyper­
elastoplastic material models (e.g., Simon, 1988a, b, 1992; Simo and Ortiz, 1985; Weber
and Anand, 1990; Simo and Miehe, 1992; Simo and Meschke, 1993 ; Miehe, 1996) presume
isotropic elastic material behaviour, and are based in the current configuration, the major
exception to this latter case being the work of Eterovic and Bathe (1990). With respect to the
current configuration, the basic algorithmic form for the update of the elastic deformation is
expressed in terms of the elastic left Cauchy-Green deformation tensor

(109)

The corresponding algorithmic form for BE can be obtained from (43) and the identity

I.e.,

Fexp(A)F- 1 = exp(FAF- 1
), (110)

via (52) and (97). By working with the general algorithmic form (43) from the start, there
is no need to introduce an evolution for BE and so a "split" of this relation into kinematic
and constitutive parts, as done by Simo (1992). Although it is certainly possible to
implement models for isotropic hyperelastoplasticity with kinematic hardening on the basis
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of (111) (i.e. as shown by the results (95) and (101) of the previous section), the numerical
integration may be easier to carry out (depending on the model) with respect to the
intermediate configuration. Furthermore, a formulation and implementation with respect
to this latter configuration facilitates generalizations of the model to, e.g., anisotropic elastic
material behaviour, the subject of future work.
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APPENDIX: CLASSICAL HYPOELASTIC MODELS

For completeness, we briefly derive in this appendix the classical hypoelastic cases relevant to elastoplasticity
at large deformation in metals discussed in the text. For an alternative, more detailed formulation on this, we
refer the reader to Perie (1992). According to Truesdell and Noll (1965), hypoelasticity can represent the material
response of an elastic material only when (I), the material possesses a natural, i.e., stress-free, reference state, and
(2), the response of the material to small strain "perturbations" away from this state is isotropic. As such, any
"derivation" of such relations from finite elastic relations relies in general on the assumptions of (I), isotropic
material behaviour, and (2), the existence of a natural state, as well as on (3), a physical linearization of the finite
relation via time-differentiation, and (4), reduction of result to the case of small "deformation".

To begin, it is instructive to first look at the purely elastic case, i.e., when P = l. We begin by introducing the
polar decomposition

F= VR=RU

of F. The time derivative of this last relation yields as usual

where we have introduced the notation

D A ,= symViA - 1
),

WA ,= skw(AA I),

(AI)

(A2)

(A3)

for any time-dependent second-order tensor A ; in particular, we have then LF = L, DF = D and W•. = W with

(A4)

as well as LR = WR' Consider next the Kirchhoff stress in the basic material frame-indifferent forms
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= Ff:I'(C)F

relative to U and C, respectively with

X(U) = Uf:I'(C)U.
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(A5)

(A6)

As is the case in hypoelasticity, we assume that the reference configuration with respect to which (A5) are expressed
is stress-free, i.e.,

X(l) = 0 = f:I'(l).

Taking now time derivatives of (A5) yields their physically-linear forms

0RK = R(DX)(U)[RT(OR Jl)R]RT

0FK = 2F(Df:I')(C)[FDFFJP.

(A7)

(A8)

In these last relations, the Frechet derivatives (DX)(U) and (Df:I')(C) of X and Y represent the corresponding
elasticity tensors. In addition, we have introduced the notation

for the objective time derivative of K with respect to any time-dependent invertible tensor A. In particular,

oRV=RORT

= V-[WR , JI)

= DFV+ (WF- WR) V

represents the Green-Naghdi derivative of V, which follows from (AI) and (A2). Further, the identity

has also been used to obtain (A8),.
For simplicity, we restrict attention here to the case of small total strain as defined by

U=I+0(8)

F=R+0(8)

via (AI), with

8 ,= lin VI = lin UI.

(A9)

(AIO)

(All)

(AI2)

(A13)

This is in contrast to the case considered in the text, in which only the deviatoric part (i.e., ofln UE) was considered
small. Going a step further than (AI2) would be of course to assume geometric linearity, in which both strains
and rotations are small. Indeed, in this latter case, the displacement gradient H = F-I is assumed small, something
which holds only when both U and R are small. In particular, (AI2) yields

Lv = 0+0(8)

via (A3). This last approximation, as well as (A2) and the symmetry of 0, imply

Wv = 0+0(8),

and so

from (A2). In turn, this last result leads to

(AI4)

(AI5)

(AI6)

(AI7)

Consequently, we may replace the Green-Naghdi derivative 0RK with its Jaumann counterpart to 0(8) in (A8),.
Using these results in (A8) and (AlO) yields

oRK = R(DX)(l) [RTDFR)RT+0(8)

0FK = 2R(Df:I')(l)[RTDFR)RT+0(8). (AI8)
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Finally, in the case of isotropic material behaviour, these reduce to the Green-Naghdi and Oldroyd hypoclastic
forms

[)RK = HElD,],

[),K= HElD,],

respectively, valid to O(B), with

HE '=(D%)(I) = 2(D9')(I),

the second equality following from (A6) and the condition (A7). Here,

(AI9)

(A20)

(A2I)

represents the usual constant, isotropic, fourth-order elasticity tensor appearing from the start in the case of
hypoelasticity; in the current context, it arises with respect to the natural state U = 1 in the context of (AI2).

These last results can be applied in particular to the case of isotropic hyperelasticity. Indeed, in this case, we
have

% = l{!.InV = DI{!,

with

I{! = !/J(ln U) = !/J(l, ,1z,13)

for!/J analogous to (59) with (60). The Frechet derivative of (A22) yields then the connection

(D%)(l!) = (Dz!/J)(ln l!)(Dln)(U)

between the corresponding elasticity tensors; in particular,

(A22)

(A23)

(A24)

follows from (AI2), (A22) and (A23), with (D In)(1) = I. Of course, CE as defined in (67) in the text reduces to
HE when we assume sph(ln U) is small, as we are doing in this appendix.

With these basic results, we now turn to hypoelastoplasticity. By analogy with (A5) and (AI9), time
differentiation of the elastoplastic forms

for the Kirchhoff stress, together with the assumption of small elastic strain, yields the incremental forms

[)REK = HEfDE ],

[)'EK = HEfDE ],

(A26)

(A27)

in this context, again to O(BE), where for simplicity we now consider BE = lin VEl = lin UEI to be "small", and here

from (A20) and (A25). Similarly, the analogy with (AI2) implies

UE = I+O(BE),

E=RE+O(BE),

via (24). Likewise,

follows by analogy with (AI4), and so the relations

and

respectively, in the case of small elastic strain.

(A28)

(A29)

(A30)

(A31)

(A32)
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The basic connection between the total, elastic and plastic deformation rates and spins is obtained via time
differentiation of the elastic deformation tensor (10) and rearrangement, i.e.,

(A33)

Reduction of this last relation to hypoelastoplastic form is contingent on the result

(A34)

via (29). Substitution of (A34) into (A33) then yields

(A35)

from which we obtain

(A36)

Using the results (A31) and (A36) in (A27), yields the alternative form

(A37)

of (A27),. This last result contains in fact the usual Jaumann and Green-Naghdi forms for hypoelastoplasticity.
Indeed, in view of the associated form (98) for REDpRL if we assume Wp = 0, the Jaumann form is obtained. As
discussed in the text, it has long been known that neglecting the "plastic spin" Wp leads to Jaumann-like behaviour
in combination with kinematic hardening (e.g., Dafalias, 1985); as well, this is consistent with the hyperelastic­
based results for simple shear discussed in the text. Alternatively, if we assume Rp = I, the results (74) (assuming
again that Isph(ln UE )! « I) lead to

(A38)

in which case (A37) reduces to the Green-Naghdi form for hypoeiastoplasticity. This result is also completely
consistent with our hyperelastic-based approach discussed in the text. Finally, the usual Oldroyd form

(A39)

for hypoelastoplasticity arises from (A35), (A27)" (A36)" and the fact that K = O(OE)'


